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Summary This study presents a semi-analytical solution for the problem of leakage in an
unconfined aquifer bounded below by an aquitard of finite or semi-infinite extent. The
homogeneous anisotropic unconfined aquifer of infinite radial extent is pumped continu-
ously at a constant rate from a well of infinitesimal radius. The aquitard is also homoge-
neous, anisotropic and of infinite radial extent. Flow in both the aquifer and the aquitard
is allowed to occur both vertically and horizontally. Exact solutions to the governing equa-
tions given in this work are developed in the double Laplace–Hankel transform space for
drawdown response in the unconfined aquifer and the underlying aquitard. The inverse
transforms of the solutions are obtained numerically. The theoretical results show that
leakage can cause significant departure, at both early and late times, from the solution
with no leakage. The solution presented here can be used in least-squares routines for
estimation of hydraulic parameters for two-layered unconfined aquifer–aquitard systems.
ª 2007 Elsevier B.V. All rights reserved.

Introduction

It has long been recognized that leakage strongly affects the
drawdown response of confined aquifers that are pumped
continuously at a constant rate and are bounded by aqui-
tards. The first major attempt to mathematically model
the effect of leakage in confined aquifer flow was made
by Hantush and Jacob (1955) who presented what has come

to be referred to as the classical theory of leakage. To ob-
tain their solution Hantush and Jacob (1955) assumed that
the confined aquifer was bounded from below and above
by aquitards of vertical finite extent in which flow was en-
tirely vertical and the effect of elastic storage was negligi-
ble. The assumption of negligible effect of the elastic
storage of the aquitards led to a steady-state aquitard flow
problem that yielded a linear distribution of hydraulic head
in the aquitards. For the confined aquifer Hantush and Jacob
(1955) assumed that flow was essentially horizontal. A ma-
jor limitation of the classical leakage theory is the assump-
tion that the storage of the aquitards can be neglected.
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Subsequently, Hantush (1960) presented the modified
leakage theory in which aquitard elastic storage was taken
into account. As in classical leakage theory, flow in the aqui-
tards was assumed to be entirely vertical, whereas that in
the aquifer was assumed to be horizontal. Hantush (1960)
presented analytical solutions only for early and late time.
A more complete analytical solution to the problem, which
is not restricted to early and late time behavior, was devel-
oped by Neuman and Witherspoon (1969a,b). They consid-
ered two confined aquifers, in which flow was assumed to
be entirely horizontal, separated by an aquitard in which
flow was assumed to be entirely vertical. To justify the
assumption of vertical flow in aquitards and horizontal flow
in the aquifer, Neuman and Witherspoon (1969b) stated that
‘‘when the permeabilities of the aquifers are two or more
orders of magnitude greater than that of the aquitard, er-
rors introduced by this assumption are usually less than
5%.’’

The effect of leakage on flow in an unconfined aquifer
was first considered by Ehlig and Halepaska (1976) in their
numerical (finite difference) solution of a coupled con-
fined-unconfined aquifer problem. They adopted the Boul-
ton (1954) model to simulate unconfined aquifer flow and
the Hantush and Jacob (1955) model to simulate leakage
through the common boundary of the system. No analytical
solution was developed. Zlotnik and Zhan (2005) developed
an analytical solution for the problem of flow in a coupled
unconfined aquifer–aquitard system where the horizontal
flow component in the aquitard is neglected. Zhan and Bian
(2006) extended the work of Zlotnik and Zhan (2005) and
developed analytical and semi-analytical methods for com-
puting the leakage rate and volume induced by pumping
based on the works of Hantush and Jacob (1955) and Butler
and Tsou (2003). Zhan and Bian (2006) also neglect horizon-
tal flow in the aquitard. The assumption of strictly vertical
flow in the aquitard is based on the work of Neuman and
Witherspoon (1969b) as discussed above. Additionally, Zlot-
nik and Zhan (2005) and Zhan and Bian (2006) restrict their
solutions to the case of an aquitard of semi-infinite vertical
extent. In this work, we develop a more general solution
with respect to permissible values of aquitard hydraulic con-
ductivity and aquitard vertical extent.

The purpose of this work is to present an exact analyt-
ical solution (in the double Laplace–Hankel transform
space) to the governing equations presented herein for

the problem of flow with leakage in an unconfined aquifer
bounded from below by an aquitard of finite or semi-infi-
nite vertical extent. The analytical solution obtained in
the double Laplace–Hankel transform space is inverted
numerically. It is developed for the case of a fully pene-
trating well of infinitesimal radius pumping continuously
at a constant rate from an aquifer of infinite radial extent.
Water release due to water table decline is simulated in
the manner of Neuman (1972); that is, flow in the unsatu-
rated zone above the water table is assumed to have neg-
ligible effect on flow in the saturated zone. Cooley (1971)
solved the saturated–unsaturated flow problem numeri-
cally, and recently, Tartakovsky and Neuman (2007) have
developed an analytical solution to this problem. We focus
on incorporating leakage into the unconfined aquifer flow
problem, and we adopt the water table response devel-
oped by Neuman (1972) for simplicity. Moench (1994) dem-
onstrated that when the parameter estimation procedure
is done correctly, it is possible to obtain reasonable esti-
mates of specific storage when water table response is
modeled in the manner of Neuman (1972).

The solution developed here is for a two layered uncon-
fined aquifer–aquitard system. The solution for a two-lay-
ered system can be used as an approximation of a
multilayered system where layers below the unconfined
aquifer are combined into a single layer bounded below by
an impermeable boundary. We do not adopt the assump-
tions of horizontal flow in the aquifer and vertical flow in
the aquitard. Coupling between unconfined aquifer and
aquitard flow is accomplished through continuity conditions
(of head and normal flux) imposed at their common bound-
ary. Additionally, the unconfined aquifer and the aquitard
are considered to be anisotropic. Theoretical results com-
pare well to numerical results computed with MODFLOW.
They also show that leakage can lead to significant deviation
of the unconfined aquifer response from the standard re-
sponse predicted by the Neuman (1972) solution.

Governing flow equations

To determine the drawdown response, s1, of an unconfined
aquifer from which water is pumped continuously at a con-
stant rate, Q, through a fully penetrating well of infinitesi-
mal radius, we begin by defining the governing flow
equation as

Nomenclature

Kr,1 aquifer horizontal hydraulic conductivity (LT�1)
Kz,1 aquifer vertical hydraulic conductivity (LT�1)
Ss,1 aquifer specific storage (L�1)
SY aquifer specific yield (�)
Kr,2 aquitard horizontal hydraulic conductivity

(LT�1)
Kz,2 aquitard vertical hydraulic conductivity (LT�1)
Ss,2 aquitard specific storage (L�1)
ar,1 aquifer horizontal hydraulic diffusivity (L2T�1)
az,1 aquifer vertical hydraulic diffusivity (L2T�1)
ar,2 aquitard horizontal hydraulic diffusivity (L2T�1)
az,2 aquitard vertical hydraulic diffusivity (L2T�1)

b1 aquifer thickness (L)
b2 aquitard thickness (L)
z observation point vertical coordinate (L)
r observation point radial coordinate (L)
z1 observation well top of screen (L)
z2 observation well bottom of screen (L)
s1 drawdown in aquifer (L)
s2 drawdown in aquitard (L)
Q pumping well discharge rate (L3T�1)
p Laplace transform parameter
a Hankel transform parameter
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where Ss,1 is the specific storage, Kr,1 and Kz,1 are the radial
and vertical hydraulic conductivities, respectively, and
(r,z,t) are space–time coordinates (see Fig. 1). It is as-
sumed here that space coordinates are oriented parallel
to the respective principal directions of hydraulic conduc-
tivity. The aquifer flow equation (1) is solved subject to
the following initial and boundary conditions:

s1ðr; z; 0Þ ¼ 0; ð2Þ
lim
r!1

s1ðr; z; tÞ ¼ 0; ð3Þ
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where Q is the volume flow rate from the well. Eq. (5) is the
linearized form of the kinematic boundary condition at the
water table (Neuman, 1972). It is convenient to rewrite
Eq. (1) and the associated initial and boundary conditions
(Eqs. (2)–(5)) in dimensionless form as
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; ð6Þ
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where sD,1 = s1/Hc, zD = z/b1, rD = r/b1, tD ¼ ar;1t=b
2
1,

j1 = Kz,1 /Kr,1 (unconfined aquifer anisotropy ratio),
aD,Y = rj1 and r = b1Ss,1/SY. In the above development we
have followed common convention in hydrogeology by
defining the characteristic head as Hc = Q/(4pb1 Kr,1). A
summary of all dimensionless parameters used in this work
is given in Table 1.

The drawdown response in the aquitard, s2, due to pump-
ing in the overlying unconfined aquifer is determined by
solving the following flow problem:

Ss;2
os2
ot
¼ Kr;2

r

o

or
r
os2
or

� �
þ Kz;2

o2s2
oz2

; ð11Þ

where Ss,2 is the aquitard specific storage, and Kr,2 and Kz,2
are its horizontal and vertical hydraulic conductivities. Eq.
(11) is solved subject to the following initial and boundary
conditions:

s2ðr; z; 0Þ ¼ 0; ð12Þ
lim
r!1

s2ðr; z; tÞ ¼ 0; ð13Þ

lim
r!0

r
os2
or
¼ 0; ð14Þ

Kz;2
os2
oz

����
z¼�b2

¼ 0: ð15Þ

Of particular note here is the fact that we have included
horizontal flow in the aquitard, which is assumed insignifi-
cant in all other leakage theories; a more general aquitard
flow problem is considered here. Neglecting horizontal aqui-
tard flow is equivalent to assuming that the horizontal
hydraulic diffusivity of the aquitard is negligible compared
to its vertical diffusivity. In water-deposited sedimentary
formations, the converse is likely to be the case. Justifica-
tions for neglecting horizontal aquitard flow come from
assuming negligible horizontal hydraulic gradients in the
aquitard induced by pumping in the overlying aquifer, or
from the steady-state tangent refraction law for the inter-
face between two media, tanh1/tan h2 = K1/ K2. Neuman
and Witherspoon (1969a) suggest that horizontal head gradi-
ents in the aquitard may be negligibly small compared to
vertical gradients for cases where the hydraulic conductiv-
ity of the aquitard is at least two orders of magnitude smal-
ler than that of the aquifer. However, it should be noted
that this was demonstrated only for isotropic aquitards. In
anisotropic aquitards with horizontal hydraulic conductivi-
ties that are significantly greater than the vertical, horizon-
tal flow may be significant. Our objective is to present a
solution that can be used even in cases where the aquitard
and aquifer hydraulic conductivities differ by less than two

Figure 1 A schematic diagram of an unconfined aquifer–
aquitard system.

Table 1 Definitions of dimensionless quantities

Dimensionless parameter Expression

aD,r ar,2/ar,1
aD,z az,2/az,1
KD,r Kr,2/Kr,1
KD,z Kz,2/Kz,1
aD,Y b1SS,1 Kz,1/(SYKr,1)
r b1SS,1/SY
bD b2/b1
zD z/b1
rD r/b1
tD t Kr;1=ðSS;1b21Þ
sD,1 s14pb1 Kr,1/Q
sD,2 s24pb1 Kr,1/Q
j1 Kz,1/Kr,1

g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ pÞKr;1=Kz;1

p
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2ar;2=ar;1 þ pÞaz;2=az;1

p
n g1(b1SS,1 Kz,1)/(SYKr,1p)
c g1Kr,1/(g2 Kr,2)
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orders of magnitude, and can simulate horizontal flow in the
aquitard.

Eqs. (1) and (11) are coupled by imposing the following
continuity conditions for drawdown and vertical flux at
z = 0, their common boundary:

s1ðr; 0; tÞ ¼ s2ðr; 0; tÞ; ð16Þ

Kz;1
os1
oz

����
z¼0
¼ Kz;2

os2
oz

����
z¼0
: ð17Þ

As in the case of aquifer flow, it is convenient to rewrite the
aquitard flow Eq. (11), and the associated initial and bound-
ary conditions, given by Eqs. (12) and (13), in dimensionless
form as

osD;2
otD
¼ aD;r

rD

o

orD
rD

osD;2
orD

� �
þ aD;z

o2sD;2
oz2D

; ð18Þ

sD;2ðrD; zD; 0Þ ¼ 0; ð19Þ
lim
rD!1

sD;2ðrD; zD; tDÞ ¼ 0; ð20Þ

lim
rD!0

rD
osD;2
orD
¼ 0; ð21Þ

osD;2
ozD

����
zD¼�bD

¼ 0; ð22Þ

where sD,2 = s2/Hc, aD,r = ar,2/ar,1, aD,z = az,2/ar,1,bD = b2/
b1, and az,i = Kz,i /Ss,i and ar, i = Kr,i/Ss,i, the vertical and ra-
dial diffusivities, respectively, with i = 1 for the aquifer and
i = 2 for the aquitard. Nondimensionalization of the continu-
ity conditions leads to

sD;1ðrD; 0; tDÞ ¼ sD;2ðrD; 0; tDÞ; ð23Þ

osD;1
ozD

����
zD¼0
¼ KD;z

osD;2
ozD

�����
zD¼0

; ð24Þ

where KD,z = Kz,2/Kz,1, the ratio of the vertical hydraulic
conductivity of the aquitard to that of the unconfined
aquifer.

Exact solution in Laplace–Hankel transform
space

Considering the aquifer flow problem, we apply the Laplace
and the zero-order Hankel transforms (see Appendix A for
definitions; hereafter, the zero-order Hankel transform will
be referred to simply as the Hankel transform) to Eq. (6) and
solve the resulting equation subject to the appropriate ini-
tial and boundary conditions (see Appendix B for details).
The resulting solution can be decomposed as follows (Neu-
man, 1972)

�s�D;1ða; zD; pÞ ¼ �u�Dða; pÞ þ �v�Dða; zD; pÞ; ð25Þ

where p and a are the Laplace and Hankel transform param-
eters, respectively, and

�u�Dða; pÞ ¼
2

pðpþ a2Þ : ð26Þ

The analytic inverse Laplace–Hankel transform of �u�D is

L�1fH�1
0 f�u�Dða; pÞgg ¼ uDðxÞ ¼ E1ðxÞ; ð27Þ

where E1(x) is the exponential integral (Abramowitz and
Stegun, 1972), sometimes called the well function in
hydrogeology literature,

E1ðxÞ ¼
Z 1

x

e�x
0

x0
dx0; ð28Þ

where x 0 is a dummy variable and x ¼ r2D=ð4tDÞ. Thus, the
time-domain solution for the drawdown in the unconfined
aquifer is

sD;1ðrD; zD; tDÞ ¼ E1ðxÞ þL�1fH�1
0 f�v�Dða; zD; pÞgg; ð29Þ

where L�1 and H�1
0 denote the inverse Laplace and Hankel

transform operators, respectively (see Appendix A) and �v�D is
given by (see Appendix B for details)

�v�D ¼ �
�u�D
D
fn cosh½g1ð1� zDÞ� þ sinh½g1ð1� zDÞ�

þ c cothðg2bDÞ coshðg1zDÞ þ sinhðg1zDÞg; ð30Þ

where c = g1/(g2KD,z), g2
2 ¼ ðpþ aD;ra2Þ=aD;z and D is given by

Eq. (B.23) in Appendix B. Additionally, the solution for the
double Laplace–Hankel transform of drawdown in the aqui-
tard is given as

�s�D;2¼ �u�D 1� 1

D
½ncoshðg1Þþsinhðg1Þþccothðg2bDÞ�

� �
coshðg2zDÞ

�

� c
D
½1�coshðg1Þ�nsinhðg1Þ�sinhðg2zDÞ

�
:

ð31Þ

Considering the solution for flow in the unconfined aquifer
and taking the limit as bD! 0, it can be shown that Eq.
(30) reduces to

�v�D ¼ �
�u�D coshðg1zDÞ

n sinhðg1Þ þ coshðg1Þ
; ð32Þ

and sD,1 becomes the solution obtained by Neuman (1972)
for unconfined aquifer flow with no leakage. This occurs be-
cause as bD! 0 the no flow condition applied at zD = bD (the
aquitard base) becomes the boundary condition at zD = 0,
the aquifer base. In the limit, as bD!1, coth(g2bD) = 1.0
and Eq. (31) reduces to the equation for drawdown response
in an unconfined aquifer bounded from below by a semi-infi-
nite aquitard. Hence, the solution developed herein is more
general that that of Zlotnik and Zhan (2005) who considered
only a semi-infinte aquitard.

Screened observation wells

Eq. (29) is useful for predicting point drawdown response
that can be measured with a piezometer. When drawdown
response is required for an observation well that is screened
over an interval [z1,z2] (see Fig. 1), Eq. (29) must be inte-
grated over that interval leading to

hsD;1ðrD; tDÞi ¼ E1ðxÞ þL�1fH�1
0 fh�v�Dða; pÞigg; ð33Þ

where h . . . i denotes the averaging operator and h�v�Dða; pÞi is

h�v�Dða; pÞi ¼
1

zD;2 � zD;1

Z zD;2

zD;1

�v�Dða; zD; pÞdzD; ð34Þ

where zD,i = zi/b1 with i = 1,2. Carrying out the integration
in Eq. (34) leads to

h�v�Dða;pÞi ¼
�u�D
g1D
fn sinh½g1ð1� zDÞ� þ cosh½g1ð1� zDÞ�

� ccothðg2bDÞ sinhðg1zDÞ � coshðg1zDÞgj
zD;2
zD;1
: ð35Þ
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For the special case of an observation well that is screened
across the entire saturated thickness of the unconfined
aquifer, i.e. zD,1 = 0 and zD,2 = 1, Eq. (35) reduces to

h�v�Dða; pÞi ¼ �
2�u�D
g1D

nþ c cothðg2bDÞ
2

sinhðg1Þ þ coshðg1Þ � 1

� 	
:

ð36Þ

Numerical inversion of double Laplace–Hankel
transform solutions

One can, in principle, obtain the analytical inverse Laplace
transforms of �s�D;1 and �s�D;2 by using the methods of complex
contour integration, including the theory of residues (Neu-
man, 1972). In this work, however, the inverse Laplace
and Hankel transforms are obtained numerically. The
expressions for �s�D;1 and �s�D;2 were evaluated in Laplace–Han-
kel space using extended precision (greater than Fortran
double precision). The inverse Laplace transform was ob-
tained first using the doubly-accelerated Fourier series ap-
proach of de Hoog et al. (1982). The inverse Hankel
transform (see Appendix A) was approximated by splitting
the improper Hankel integral into a finite integral over the
interval 0 6 a 6 j0,n, and an infinite integral over the inter-
val j0,n 6 a <1, in a manner similar to that proposed by
Wieder (1999). The integral is split at j0,n, the nth zero of
J0 (arD). The finite portion of the integral was evaluated
using the QXGS automatic integration routine (Favati
et al., 1991). Most of the contribution to the total Hankel
integral comes from the finite portion of this integral. The
infinite integral was approximated by integrating between
each j0,n and j0,n+1, as n becomes large, using Gauss–Lob-
atto quadrature for each interval. Finally, partial sums of
the areas (which alternate in sign) were accelerated with
Wynn’s �-algorithm (Antia, 2002; Lee, 1999). Because of
the decaying magnitude and alternating signs of the areas
between successive zeros, the �-algorithm was very
effective.

Theoretical results

Here we present and discuss some key results for the pre-
dicted unconfined aquifer and aquitard behavior in a cou-
pled unconfined aquifer–aquitard system, where the
aquifer is pumped continuously at a constant rate. In all
the figures presented here, E1(x) is the confined response
Theis solution (x ¼ r2D=4tD) and E1(xY) is the delayed yield re-
sponse Theis solution (xY ¼ r2D=4tDY

, where tDY
¼ Kz;1t=b1SY).

The numerically inverted results for both sD,1 and sD,2 were
compared to results from an axisymmetric wedge-shaped
MODFLOW simulation (Reilly and Harbaugh, 1993). The fi-
nite-difference results agree well with the semi-analytical
solution developed here (Fig. 2).

Fig. 3 shows the point piezometer response of the gen-
eral leaky drawdown response, sD,1, for different values of
zD at rD = 1.0 with aD,r = aD,z = 2.5 · 10�5, bD = 5.0, KD,z =
1.0, and SY = 0.25. The solution obtained by Neuman
(1972) for the same configuration, but no leakage, is also in-
cluded. The solution developed herein shows significant
departure from that of Neuman (1972) throughout the inter-
mediate time range as well as at late time. However, the

leakage solution does not reach a steady state as the case
would be if the assumptions of classical leakage theory
(Hantush and Jacob, 1955) were adopted. In fact the
solution developed here follows the curve E1(y) where
y = (rDb1)

2/4hari and hari is the average system radial
hydraulic diffusivity. Here, the average radial diffusivity
used is hari = b1hKri/SY where hKri = (b1Kr,1 + b2Kr,2)/
(b1 + b2). In Fig. 3 it can be seen that aquifer drawdown gen-
erally decreases with increasing dimensionless distance zD
from the aquifer base. However, at very early time draw-
down is smaller closer to the base of the unconfined aquifer
(the curve for zD = 0.0 crosses over those for zD = 0.5 and
zD = 0.75 at early time in Fig. 3). This is attributable to leak-
age which has the greatest effect at the aquifer base.

Aquitard drawdown response due to pumping in the
unconfined aquifer is shown in Fig. 4 for different values
of zD at rD = 1.0. The effect of delayed water table decline
is observable in the aquitard very close to its common
boundary with the unconfined aquifer. This effect decreases
rapidly with increasing depth into the aquitard and, for the
example shown here, becomes negligible for zD 6 �0.25.
Below this level the aquitard behaves as if it were overlain
by a confined aquifer. Figs. 5 and 6 are plots of sD,1 and sD,2,
respectively, for different rD. For the results shown here
Kz,1/ Kz,2 = 200, and the aquifer and the aquitard are isotro-
pic. Fig. 6 is of particular importance as it illustrates that
drawdown response in the aquitard has strong variation in
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Figure 2 Comparison of MODFLOW and semi-analytic draw-
down responses in the aquifer at zD = 0.1 (a) and in the aquitard
at zD = �0.1 (b). Both aquifer and aquitard are isotropic.
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the radial direction (a horizontal gradient exists in the aqui-
tard), even for Kz,1/Kz,2 = 200. Our solution is very general
and can be used to predict aquitard drawdown response un-
der conditions of significant radial flow in the aquitard.

Fig. 7 shows a plot of dimensionless drawdown re-
sponse, sD,1, in an isotropic unconfined aquifer at
(rD,zD) = (1.0,0.1) for different values of the vertical
hydraulic conductivity ratio, KD,z, between the aquifer
and an isotropic aquitard. The results were obtained for
bD = 5.0 and SY = 0.25. The results show that as the hydrau-
lic conductivity of the aquitard increases, the effect of
leakage increases. For very small values of KD,z (e.g., tight
clay, unfractured bedrock), the results shown here con-
form to those of Ehlig and Halepaska (1976), which showed
that the effect of leakage is only noticeable at late time.
The solution follows that of Neuman (1972) at early and
intermediate time. However, as KD,z increases (e.g. weath-
ered clay, fractured bedrock) the effect of leakage is sig-
nificant even at early time. An important fact that can be
deduced from Fig. 7 is that, if the vertical hydraulic con-
ductivities of the unconfined aquifer and the aquitard dif-
fer only by an order of magnitude, leakage can have a
significant effect on drawdown response in the aquifer.

The dashed curve in Fig. 7 is the aquifer response for
KD,z = 1.0 and Ss,2 = Ss,1. It can be viewed as the unconfined
aquifer response at zD = 0.1 due to a pumping well that
partially penetrates (from zD = 1.0 to zD = 0.0) an aquifer
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Figure 3 Drawdown response in the unconfined aquifer for
different values of zD (rD = 1.0 and bD = 5.0).

10-2

10-1

100

101

10-2 100 102 104 106 108 1010

s D
,2

(r D
,z

D
,t D

)

tD

E1(x)
E 1(

x Y
)

z D
 =

 -1
.0

z D
 =

 -0
.2

5

zD = 0.0

z D
 =

 -0
.0

1
z D

 =
 -0

.0
2

Figure 4 Drawdown response in the aquitard for different
values of zD (rD = 1.0 and bD = 5.0).

10-2

10-1

100

101

10-2 100 102 104 106 108 1010

s D
,1

(r D
,z

D
,t D

)

tD/rD
2

E1(x)

E1(y)

E 1(x Y)

rD = 0.2
rD = 0.4
rD = 0.6

rD = 0.8
rD = 1.0

rD = 1.5
rD = 2.0

with leakage
without leakage

Figure 5 Point drawdown response in the aquifer for differ-
ent values of rD (zD = 0.1, bD = 5.0).

10-2

10-1

100

101

10-2 100 102 104 106 108 1010

s D
,2

(r D
,z

D
,t D

)

tD/rD
2

E1(x)

E1(y)

E 1(
x Y

)

rD = 0.2
rD = 0.4

rD = 1.0
rD = 0.8

rD = 0.6

Figure 6 Point drawdown response in the aquitard for
different values of rD (zD = �0.1, bD = 5.0).

10-2

10-1

100

101

10-2 100 102 104 106 108 1010

s D
,1

(r D
,z

D
,t D

)

tD

E1(x)
E 1(

x Y
)

Kz,2 = 0.0
KD,z = 1.0

KD,z = 0.5
KD,z = 0.25

KD,z = 5×10-4

KD,z = 5×10-3

KD,z = 5×10-2

partial penetration

Figure 7 Drawdown response in the unconfined aquifer–
aquitard system for different values of aD,r (aD,z = aD,r, rD = 1.0,
zD = 0.1 and bD = 5.0).

64 B. Malama et al.



of thickness equal to b1 + b2. It is the solution that is ap-
proached, approximately, at late time as KD,z approaches
unity for Ss,2 5 Ss,1; it is included for comparison.

The effect of aquitard anisotropy on drawdown response
in an isotropic aquifer with Kr,2 = Kz,2 = 6 · 10�4 m/s is
shown in Fig. 8. In Fig. 8a the vertical hydraulic conductiv-
ity, Kz,2, of the aquitard is fixed at 6 · 10�6 m/s while the
horizontal hydraulic conductivity, Kr,2, is varied as indicated
in the figure. Significant deviation from the solution of Neu-
man (1972) is observed at both early and late times. How-
ever, only late-time response is affected significantly as
one changes Kr,2; early time deviation from the solution of
Neuman (1972) is unresponsive to change in Kr,2. In Fig. 8b
the results show the effect of changing Kz,2 while fixing
Kr,2 at 6 · 10�6 m/s. The results show that changing Kz,2
while fixing Kr,2 has significant effects on early time re-
sponse. The results shown in Fig. 8 suggest that the early
time drawdown response in the aquifer is affected by aqui-
tard flow that is predominantly vertical, whereas late-time
aquitard flow becomes increasingly horizontal. The results
also suggest that for an aquitard with a horizontal hydraulic
conductivity significantly larger than the vertical, aquifer
response at late time tends to ‘‘near’’ steady-state behav-
ior as Kr,2 approaches Kr,1.

Fig. 9 shows the drawdown response in the unconfined
aquifer for different values of bD. For very small values of

bD (10�3) leakage is, at early time, manifested as an in-
crease in the apparent specific storage of aquifer and the
solution initially follows the solution for bD!1. At inter-
mediate time the solution with leakage practically follows
the solution for bD = 0, which is the no leakage case of Neu-
man (1972). Hence, for such case, leakage is likely to be
mis-characterized by over-estimated values of Ss,1. This
may introduce only modest errors. However, as bD in-
creases, the solution for the leakage case shows increased
departure from that of Neuman (1972) at virtually all times
and using a large value of Ss,1 would no longer sufficiently
model the departed behavior.

To compare our solution to that of Zlotnik and Zhan
(2005) we consider an isotropic unconfined aquifer with
Kr,1 = Kz,1 = 10�3 m/s, Ss,1 = 2 · 10�5 m�1, SY = 0.2 and
b1 = 20 m, the same hydraulic properties as in Zlotnik and
Zhan (2005). In the results shown in Fig. 10a, the unconfined
aquifer is underlain by an isotropic semi-infinite aquitard
with Ss = 10�3 m�1 and the effect of aquitard hydraulic con-
ductivity on aquifer drawdown is considered. The results
shown are for conductivity values of 10�5, 10�6 and
10�8 m/s at what Zlotnik and Zhan (2005) referred to as a
far field point, (x,y,z) = (50 m,50 m,10 m). In Fig. 10b the
conductivity of the aquitard is fixed at Kr,2 = Kz,2 = 10�5 m/
s and values of Ss,2 = 10�2, 10�3, 10�5 and 10�7 m�1 are con-
sidered. The results show that leakage from the aquitard
leads to significant deviation from the solution of Neuman
(1972) at all times for a relatively highly conductive aqui-
tard Kr,2 = Kz,2 = 10�5 m/s. The effect diminishes with
decreasing aquitard conductivity. The same effect is ob-
served for aquitard specific storage. The results obtained
here are comparable to those of Zlotnik and Zhan (2005)
at early and intermediate times. However, at late time
our conclusion is at variance with that of Zlotnik and Zhan
(2005), who computed their solution up to a smaller dimen-
sionless time than is done in this work. It is clear from the
figure that leakage leads to significant deviation from Neu-
man’s 1972 solution at late time.

Though the formation below the unconfined aquifer has
so far in this work been assumed to be an aquitard, with
hydraulic conductivities smaller than those of the aquifer
in all directions, it is of interest to note that the solution
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developed herein is not limited to this scenario. Our
solution allows for more conductive formation below the
unconfined aquifer because we do not neglect horizontal
flow in the formation below the aquifer. To illustrate this,
we consider an isotropic unconfined aquifer with
Ss,1 = 10�5 m�1 and SY = 0.2, underlain with a formation
having Ss,2 = 10�3 m�1. For the case of the lower forma-

tion being less conductive than the aquifer, we set aquifer
conductivity at Kr,1 = Kz,1 = 10�3 m/s and that of the
aquitard at Kr,2 = Kz,2 = 10�5 m/s, whereas for a more con-
ductive lower formation, Kr,1 = Kz,1 = 10�5 m/s and Kr,2 =
Kz,2 = 10�3 m/s; the results are shown in Fig. 11. When
the underlying aquifer is more conductive the effects of
leakage are much more significant, a scenario which could
not be tested using previous unconfined-leaky models.
Comparing Fig. 11 with the others, it is clear that a steady
state is attained more quickly when the system consists of
two aquifers than when the system is an aquifer underlain
by an aquitard.

Summary

Leakage can be as important in unconfined aquifers as it is in
confined aquifers. Results presented here constitute an at-
tempt to solve the leakage problem for unconfined aquifers
analytically. We have presented semi-analytical solutions,
the exact analytical solutions in the double Laplace–Hankel
transform space are inverted numerically. Although analyt-
ical expressions are not given for the inverse transforms of
the double Laplace–Hankel transforms of the unconfined
aquifer and aquitard drawdown, widespread availability of
nonlinear least squares routines and fast computers provide
for quick computation of system behavior as well as for esti-
mation of system parameters using the exact solutions for
the double Laplace–Hankel transforms of drawdown devel-
oped here.

In the solution obtained by solving the unconfined aquifer
and aquitard flow problems simultaneously, horizontal flow
in the aquitard was not neglected and unconfined aquifer
flow was treated in the manner of Neuman (1972). We used
drawdown and flux continuity conditions at the contact be-
tween the aquifer and the aquitard, removing the need to
make the assumptions adopted in the classical and modified
leakage theories of Hantush and Jacob (1955) and Hantush
(1960). An important result obtained here is that leakage
can lead to significant departure from Neuman’s 1972 solu-
tion even at early time, which is at variance with the results
of Ehlig and Halepaska (1976) that showed departure only at
late time. The solution developed in this work can also be
used to estimate hydraulic parameters of aquitards overlain
by unconfined aquifers. It is more general than that devel-
oped by Zlotnik and Zhan (2005) as it allows for horizontal
flow in the formation below the unconfined aquifer. It also
allows for an underlying formation of both finite and semi-
infinite vertical extent. We have not developed type-curve
procedures for estimation of aquifer and aquitard parame-
ters due to the large number of parameters involved and
the increased availability of automatic parameter estima-
tion routines.

Appendix A

The zero-order Hankel transform, f�0ðaÞ, of a function, f(rD),
is given by

H0ffðrDÞg ¼ f�0ðaÞ ¼
Z 1

0

rDJ0ðarDÞfðrDÞdrD; ðA:1Þ
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Figure 11 Comparison of drawdown response in aquifer at
(rD, zD) = (1.0,0.5) for K2 > K1 with the case of K2 < K1.
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where a is the real-valued Hankel parameter and J0 is the
zero-order Bessel function of the first kind. The inverse Han-
kel transform of f�0ðaÞ is defined as

H�1
0 ff�0ðaÞg ¼ fðrDÞ ¼

Z 1

0

aJ0ðarDÞf�0ðaÞda: ðA:2Þ

A particular relation, adopted from Neuman and Wither-
spoon (1968), used in this work, is

H0
1

rD

o

orD
rD

o�sD
orD

� �� �
¼ �a2�s�D � lim

rD!0
rD

o�sD
orD

: ðA:3Þ

Appendix B

To obtain the general solution to the dimensionless flow
problem for the unconfined aquifer, we follow the work of
Neuman (1972) and decompose sD,1 as

sD;1ðrD; zD; tDÞ ¼ uDðrD; tDÞ þ vDðrD; zD; tDÞ; ðB:1Þ

where uD satisfies

ouD

otD
¼ 1

rD

o

orD
rD

ouD

orD

� �
; ðB:2Þ

subject to

uDðrD; 0Þ ¼ 0; ðB:3Þ
lim
rD!1

uDðrD; tDÞ ¼ 0; ðB:4Þ

lim
rD!0

rD
ouD

orD
¼ �2: ðB:5Þ

The component vD satisfies the equation

ovD

otD
¼ 1

rD

o

orD
rD

ovD

orD

� �
þ j1

o2vD

oz2D
; ðB:6Þ

subject to

vDðrD; zD; 0Þ ¼ 0; ðB:7Þ
lim
rD!1

vDðrD; zD; tDÞ ¼ 0; ðB:8Þ

lim
rD!0

rD
ovD

orD
¼ 0; ðB:9Þ

� ovD

ozD

����
zD¼1
¼ 1

aD;Y

�
ouD

otD
þ ovD

otD

����
zD¼1

�
: ðB:10Þ

Taking the Laplace and Hankel transforms of Eq. (B.2) and
solving subject to the initial and boundary conditions given
in Eqs. (B.3)–(B.5) leads to the Theis solution (26). Taking
the Laplace and Hankel transforms of Eq. (B.6) subject to
initial and boundary conditions given in Eqs. (B.7) and
(B.8) leads to

o2�v�D
oz2D
� g2

1
�v�D ¼ 0; ðB:11Þ

where g2
1 ¼ ðpþ a2Þ=j1. Eq. (B.11) has a general solution of

�v�Dðg1; zDÞ ¼ c1e
g1zD þ c2e

�g1zD : ðB:12Þ

Applying the boundary condition (at the water table) given
by Eq. (B.10), one obtains the following linear equation
for the constants (in zD) c1 and c2:

�ðnþ 1Þeg1c1 þ ðn� 1Þe�g1c2 ¼ �u�D; ðB:13Þ

where n = g1aD,Y/p.

To obtain the general solution for aquitard drawdown re-
sponse, we take the Laplace and Hankel transforms of Eq.
(18) subject to the initial and boundary conditions given
by Eqs. (19)–(21), leading to

o
2�s�D;2
oz2D

� g2
2
�s�D;2 ¼ 0; ðB:14Þ

where g2
2 ¼ ðpþ aD;ra2Þ=aD;z. The general solution for Eq.

(B.14) is

�s�D;2ðg2; zDÞ ¼ c3e
g2zD þ c4e

�g2zD : ðB:15Þ

Applying the no flow boundary condition at the base of the
aquitard leads to the following relationship for the con-
stants c3 and c4,

c3e
�g2bD � c4e

g2bD ¼ 0: ðB:16Þ

Applying the head and flux continuity conditions at zD = 0 gi-
ven by Eqs. (23) and (24), yields the final linear equations
required to determine the constants c1 through c4,

� c1 � c2 þ c3 þ c4 ¼ �u�D; ðB:17Þ
� cc1 þ cc2 þ c3 � c4 ¼ 0; ðB:18Þ

where c = g1/(g2KD,z). Solving the system of equation given
by Eqs. B.13,B.16,B.17 and B.18 yields

c1 ¼ �
�u�D
2D
½ðn� 1Þe�g1 þ c cothðg2bDÞ þ 1�; ðB:19Þ

c2 ¼ �
�u�D
2D
½ðnþ 1Þeg1 þ c cothðg2bDÞ � 1�; ðB:20Þ

c3 ¼
�u�D
2
f1� ½ðn� cÞ coshðg1Þ þ ð1� ncÞ sinhðg1Þ

þ cðcothðg2bDÞ þ 1Þ�=Dg; ðB:21Þ

c4 ¼
�u�D
2
f1� ½ðnþ cÞ coshðg1Þ þ ð1þ ncÞ sinhðg1Þ

þ cðcothðg2bDÞ � 1Þ�=Dg; ðB:22Þ

where

D ¼ ½nc cothðg2bDÞ þ 1� sinhðg1Þ þ ½c cothðg2bDÞ þ n� coshðg1Þ:
ðB:23Þ

The final solution in Laplace–Hankel transform space is
found by substituting the expressions for the constants,
(B.19), (B.20), (B.21), (B.22), into the components of the
aquifer, (B.12) and (26), and aquitard drawdown (B.15).
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